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Letters

Comments on “On the Application of Complex Resistive

Boundary Conditions to Model Transmission

Lines Consisting of Very Thin Superconductors”

Smain Amari

In the above paper,’ the authors present an elegant method to

account for metallic losses in thin superconductors. The extensive

numerical effort, which would otherwise be necessary to exactly solve

the boundzuy-value problem, is considerably reduced by using the

concept of complex resistive boundary conditions. This idea seems

to have been originally introduced by Senior [1] as the authors point

out

In Section II. the authors introduce a sheet resistance R ((1 1))

R=; (1)

where o is the conductivity of the sheet and t its thickness. The

assumption is then made that ((12))

(2)

What is the physical phenomenon responsible for the increase in the

conductivity u?

In Section III, the authors apply the method to analyze a lossy

microstrip line through Galerkin’s method. There seems to be,

however, a crucial point that may invalidate their numerical results.

Indeed, (44) and (45 ) contain constant diagonal elements in addition

to the usual components of the lossless Green’s impedance dyadics.

The authors then expand the current density in a set of basis functions,

each of which satisfies the edge condition ((46), (47)). Galerkin’s

method is then applied to determine the propagation properties of

the structure.

The presence of the edge condition along with the constant term R
in the diagonal elements of the Green’s functions leads to integrals

of the form

J
w/2

R J1dy
Jll:(.y)Jo*(l/)dl/ ~ —

—u/~ _ll–tp’
(3)

which are infinite. Parseval’s relation was used to calculate the above

integral in ordinary space instead of the spectral domain. Also, only

the lowest term JO - was considered, but other ones me singular as

well. Taking this observation into account, could the authors explain

how they obtained numerical results that agree with the analytical

solution to the parallel-plate transmission line?

In addition, and taking into account the divergency of the matrix

elements, why isn’ t the attenuation constant infinite since it measures
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the losses in the structure which are given by (3):

1

./
~ RJsJ: h (4)

where J, is the surface current? The integral in (4) is singular yet

the authors present finite values for the attenuation constant (Fig, 9),
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Reply to Comments on “On the Application of Complex

Resistive Boundary Conditions to Model Transmission

Lines Consisting of Very Thin Superconductors”

J. M. Pond and C. M. Krowne

The comments indicate a misunderstanding of several issues that

are central to the above paper. 1 This response will address all three

of those issues in the same sequence as they were raised. The first

question concerns the resistive boundary condition. The remaining

two issues concern the use of the spectral domain approach with the

resistive boundary condition to calculate the propagation constant and

loss of transmission line structures.

With respect to the first Issue, there exists some confusion in the

comments concerning an approximation, which is made to reduce

the difficulty of the electromagnetic calculation, with a real physical

process. By mathematically preserving the value of the sheet resis-

tance, R, in the limit as the sheet thickness is mathematically reduced

to zero, a three-region problem is reduced to a two-region problem

with a modified boundary condition. As is pointed out in the above

paper, the sheet resistance for a superconducting film which is thin

compared to the superconducting penetration depth can be described

by

1
— =R
d

(1)

where a is the finite complex conductivity of the thin superconductor

and t is the finite thickness thereof. In principle, the electromagnetic

problem to be solved for the case of an infinite sheet is a three

region problem, with region I comprising the region above the

sheet, region II being the finite thickness sheet itself, and region

III representing the region below the sheet. The electromagnetic
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sohttion to such a problem can be found by solving for the fields

in till three regions, consistent with the boundary conditions at the

two interfaces. In certain cases where region II is electrically thin.

the three-region problem can be reduced to the problem of solving

for the fields in two regions (I and III), subject to the mentioned

modified boundary condition which describes the thin sheet region.

For a superconductor, electrically thin means much thinner than

the superconducting penetration depth. Just as there is no physical

phenomenon responsible for the conductivity of the sheet approaching

infinity, there is also no physical basis for the sheet thickness to

approach zero. However, if

()
linl ~ = R
t-u Uf

(2)
.+-

then the effect of the sheet region on the fields in regions I and

111 will remain properly defined and the additional complication of

solving for the fields internal to the superconductor is avoided. This

approximation, in conjunction with (13) and (14) of the above paper,

is the boundary condition known as the resistive boundary condition

[1].

The remaining concerns pertain to the calculation of losses, prop-

agation constant, and current distributions. The method of solution

presented in the above paper is successful because, in the spectral

domain, the equations can be algebraically manipulated to specifically

avoid the difficulty highlighted by (3) of the comments. In the

above paper, the use of the resistive boundary condition together

with the spectral domain technique allows the usual components

of the impedance dyadic to be modified by a term, given by (2),

which describes the thin superconducting film. Specifically, the

modification, given by (44) and (45) of the above paper, is to subtract

a complex term from the diagonal element of the impedance dyadic.

This becomes more obvious, if (44) and (45) of the above paper are

restated as

%,(<) .~w(<

where

Z,y (

+ zjc(o~s.(a ==i;(() (3)

+ 2z=(f).~., (() = fi:(() (4)

:) = z,,(<) –R (5a)

Zj, (c) = z,=(() (5b)

Zy(<) = Z=v(() (5C)

Z:,(<) = Z,,(<) – R. (5d)

Following a standard spectral domain approach [2], the application

of a Galerkin-type method results in the right-hand sides of (3) and

(4) being zero by virtue of Parseval’s theorem. In the dependent

equations. the contribution of R, representing the superconductor,

was moved to the left-hand side, since, in the spectral domain,

this is a simple algebraic manipulation as was shown in the above

paper. When thectrrrents areexpanded into aset of basis functions

with unknown coefficients, the result is a homogeneous system of

equations for which the only nontrivial solution occurs when the

determinant is zero. The root of this determinant is the complex

propagation constant and is a function of R. A specific advantage

of the approach presented in the above paper is the incorporation

of a descriptor fortbe superconducting region into the determinantal

equation. Hence, theissue raised inthe comments is neither relevant

to the method developed in the above paper, nor to the types of

problems the method was meant to address.

In a similar manner, concern over the singularity of the integral

in (4) of the comments is irrelevant because the method used in the

above paper employs a different approach to determine the losses.

The losses are given by the complex propagation constant that is the

root of the determinantal equation, as is discussed above and as was

stated at the end of Section IV of the above paper. Since Redescribes

both the stored energy anddissipated energy in the superconducting

film, following the same argument presented in the comments would

result in infinite internal energy storage in the superconductor yielding

a zero phase velocity. Obviously, such is not the case as excellent

agreement with experimental and analytical results was shown in the

above paper. The difficulties in attempting to compute the losses

via the process of (4) of the comments have been well articulated

in the literature [3]–[5]. In the above paper, a set of current basis

functions was employed, each of which satisfy the edge condition

for an infinitesimally thin perfect conductor. The selection of an

appropriate set of basis functions has also been well articulated in

the literature [6]. Furthermore, it is well known that whenever a

conductors not perfect the currents will not become singular at the

edge [3]–[5]. Since superconductors are the lowest loss conductors

known, however, it is expected that such a set of basis functions will

be abetter approximation inthiscase than in any other real world

situation. Except for distances within a penetration depth or so from

the edge. the set of basis functions usedin the above paper should

accurately describe the currents m the superconducting film. This is

one of the approximations made in the above paper for computational

efficiency. However, it does not represent the only set of current

basis functions [7] that may be used in conjunction with the complex

resistive boundary condition.

In summary. the parameters in the form of an appropriate complex

sheet resistance, quantifying the energy storage and energy dissipation

in a superconductor, have been accounted for in the complex elements

of the impedance dyadic via (44) and (45) of the above paper. The

mechanics of the resulting numerical calculation are no different than

if an infinitesimally thin perfect conductor were to be immersed in a

slightly 10SSYlayered medium. Since the impedance dyadic contains

the description of energies stored anddissipated in the superconduc-

tor. the eigenvalue found by Galerkin’s method is a complex quantity

that corresponds to the complex propagation constant. The method of

solution in the above paper specifically avoids the difficulties that are

raised in the comments. It should be emphasized that the formulation,

given by (44) and (45) in the above paper, is applicable in cases

where the superconducting film is electromagnetically thin such that

the resistive boundary condition, as given by (13) and (14) in the

above paper, applies.
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Comments on “Conversions Between S, Z, Y,
h, ABCD, and T Parameters which are Valid

for Complex Source and Load Impedances”

Roger B. Marks and Dylan F. Williams

In his recent paper,i Frickey presents formulas for conversions

between various network matrices. Four of these matrices (Z, Y, h,

and ABCD) relate voltages and currents at the ports; the other two

(S and T) relate wave quantities. These relationships depend on the

definitions of the waves themselves in terms of voltage and current.

Frickey’s results are based on an unconventional definition of the

waves, whose resulting properties are unfamiliar to most microwave

engineers. As a result, application of his formulas can easily lead to

catastrophic errors.

The scattering and transmission matrices of classical microwave

circuit theory (e.g.. [ 1]–[3] ) relate the complex amplitudes of the

counterpropagating traveling waves in a transmission line. These

modal waves are solutions of Maxwell’s equations whose dependence

on the axial coordinate z is e*’ “I’, where T is the propagation

constant. Ratios of the traveling wave amplitudes can be measured

by classical slotted line techniques or with a network analyzer using

a thru-reflect-line (TRL) calibration [4].

The classical circuit theory also allows the possibility of renormal-

izing the traveling waves by introducing a reference impedance Z,,f

that may differ from the characteristic impedance 20. The resulting

quantities form the basis of a renorrnalized scattering matrix. For

instance, the renormalized reflection coefficient (one-port scattering

matrix) 17of a load of impedance ZIO.d, using a reference impedance

Z.ef, is simply

r = zl.ad – -& = IZload Zre{ – 1

z]O.d + z,,f zload/zref + 1 “
(1)

This familiar form is the basis of the Smith Chart, which provides a

convenient graphical method of transforming between the reflection

coefficient and the normalized load impedance zload /Z,,f, which, as

shown by (1), uniquely determines r.

Instead of traveling waves, Frickey [1] makes use of parameters

that Youla [5] defines and calls “waves”; a form of these parameters

known as “power waves” has previously been applied to microwave

circuits [6]. In spite of the terminology, Youla’s parameters have

little in common with waves. For instance, they do not depend

exponentially or even monotonically on L [4]. Furthermore, the
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Fig. 1. The Impedance of a small lumped resistor calculated, using

Z,ef = Zo, from scattering parameters measured by the multiline TRL

calibration. The solid curves are calculated from (1), the dashed curves from

(2).

urouerties of Youla’s parameters differ fundamentally from those of,,
the renormalized traveling waves. For example, Youla’s reflection

coefficient P is

~ = zl.ad – z,”ef _ ZIO.J /zref – Z:ef /zref

Zk,ad + Zref – zload /zref + 1

(2)

Since (1) does not apply. the Smith Chart is inapplicable to Youla’s

parameters. In fact, ~ is not even uniquely determined by Zload /Z,,f,

as is r. As an illustration, the renormalized reflection coefficient

of a short circuit (ZIO.d = 0) is always 17 = – 1, regardless

of reference impedance Z.,f. In contrast, (2) shows that Youla’s

reflection coefficient of a short is equal not to — 1 but to — z~~f /z,,f,

which has magnitude 1 but is not generally real.

No microwave instrumentation or calibration known to us measures

Youla’s waves [4]. Thus. the equations of the above paper cannot be

used to determine impedance parameters from measured scattering

parameters. To illustrate, we used the multiline TRL calibration [7]

to measure the scattering parameters of a small lumped resistor (with

measured dc resistance l?dc = 59.3 Q) embedded in a coplanar

waveguide. We measured the characteristic impedance Zc of the

transmission line using the technique of [8] and [9]. In applying

(1) and (2), we made use of the fact that Z,.f = 20, a condition

which, as is well known, is mandated by the TRL calibration [4],

rlO1. We determined the resistor impedance zload first using ( 1). The

result, shown in the solid curves of Fig. 1, close] y tracks the resistor’s

anticipated behavior: the real part is approximately 59 Q, and the

imaginary part is small, approaching zero approximately linearly at

low frequencies. When we instead used (2) tti calculate Zlo=d, under

the assumption that the measured reflection coefficient is actually r,

we found an anomalous result (dashed curves of Fig. 1).

Due to the unconventional definition of Youla’s waves, they

can easily lead to erroneous results. For example, consider the

simple flow graph of Fig. 2. When the two devices are joined at

a reflectionless connector, we generally assume that, as long as the

reference impedances at adjoining ports are identical, we can model

the circuit by using the simple boundary conditions
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